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The general formulation of the problem of the stability of motion with 
respect to prescribed functions of the coordinates and velocities is 
due to Lyapunov /I/. A special case is that of partial stability, 
i.e., stability with respect to some of the variables /2-4/. In this 
paper some ideas of Lyapunov's first method are applied to the general 
problem of the stability of the equilibrium of reversible systems. The 
study is based on an examination of the trajectories asymptotic to an 
equilibrium position: if the equilibrium is stable with respect'to a 
function Q, this function is stable on the asymptotic trajectories. 
Asymptotic solutions are sought using a special kind of series. As an 
application, a relativistic version of Earnshaw's theorem on the 
instability of the equilibrium of a charge in a stationary electric 
field is proved. 

1. Asymptotic sohtions of reversibZe systems. Let s : (x1,. . 1 x,) be Lagrangian CO- 

ordinates of a mechanical system. 

its kinetic energy and X(z) = (X,, . . . . X,) a field of generalized forces. It will be assumed 
throughout that aij, Xh- (i, j, k = 1, . . ., n) are infinitely differentiable functions of EG. If no 
additional constraints are imposed on the system, its motion is described by the Lagrange 
equations of the second kind: 

~-&--_~X; (i=l,....n) 

Let us assume that X(0) = 0. Then x = 0 is an equilibrium position. We shall expand 
the functions Xi(x) in series in terms of homogeneous forms in x: X. = Xi"" + Xfm+l) + .,. 
As a rule, m = 1. However, degenerate cases may occur in which m>i. Define X(m) = (X$, 

., Xkl"'). Without loss of generality, we may assume that the matrix IjCQj(Z)II is the identity 

matrix at I = 0. 

Theorem 1. Suppose a vector e, le / = 1, exists, such that XF)(e)=xe,x>O. Then Eqs. 
(1.1) have a solution s(1) for which the series 

is an asymptotic expansion as t 3 -t_ 00. 
In formulae (1.2) and (1.3) XC') (2) are certain polynomials in z, with ~(1) I he, h c 

const > 0. In particular, x (t) -t 0 as t-t+-. 
The idea of the proof is as follows. One first looks for series (1.21, (1.3) which 

formally satisfy Eqs.(l.l). The series coefficients & are determined successively by 

~~Fr~~Z.~ate~.~ek~~.,55,4,555-559,199l 442 



443 

induction (see /5/j. The series (1.21, (1.3) may be divergent. However, it was shown in /6/ 
that if that is the case Eqs.tl.1) nevertheless have a solution s(t), for which one of the 
series is an asymptotic representation. For example, for the series (1.3) this means that 

as t+ + co, where t is the degree of the vector polynomial xlN). Series of the form (1.2) 
were first used by Lyapunov in his treatment of the stability of motion /l/. 

Remurk. Let z = o be an isolated zero of the homogeneous vector field X@) (5). We 
know from topology that for odd n there is always a vector e, lel= 1, such that X(m)(e) = xc. 
However, the factor x may be negative. 

Let Q (z', 5) be a smooth function in the phase space; we shall assume that Q(O,O)= 0. 
We will consider the question of whether the equilibrium s=o is stable with respect 
to Q. Let z(t) be the asymptotic solution of system (1.1) whose existence is guaranteed by 
Theorem 1: s(t)+ 0 as ~!++a,. By reversibility, Eqs.tl.1) have a solution 5' = 5 (-t) 
which tends to zero as t-+-co. Consider the function of time defined by 

q' (t) = Q (5” Oh 5’ W) 
If q’(t)+0 as t-t-00 and 4' 0) f 0, then the equilibrium position s=O is 

clearly unstable with respect to Q. This condition is equivalently expressed as 

q (t) = Q C-5’ 01, x 0)) --f 0 

as t++m. Substituting the series (1.2) (or (1.3)) into the Maclaurin expansion of Q(--I', 

I) p we obtain the series 

(1.4) 

Here qck) (z) are certain polynomials in 2 with constant coefficients. The series (1.4) 
is clearly an asymptotic representation of q(1) as t++m. We have thus proved the 
following theorem. 

Theorem 2. If at least one coefficient of the formal series (1.4) does not vanish, the 
equilibrium position x=0 is unstable with respect to Q. 

For example, suppose that the forces have a potential and that the Maclaurin expansion 
of the potential energy begins with a non-trivial homogeneous form V,,,+, of degree m + 1. 

Then obviously X(m) = -aV,+,l8x. It can be shown that if V,,, is not a minimum at x = 0, 
the equilibrium position is unstable, e.g., with respect to the Lagrange function. The vector 
e of Theorem 1 will be a minimum point of the function Vm+, on the unit sphere 1x1=1 
(see /I/). 

Theorems 1 
constraints 

and 2 can be generalized to non-holonomic systems with stationary homogeneous 

a bi, (5) xi' = 0, j = 1, . . ., m < n (1.5) 

Eqs.cl.1) are replaced by the following, more general equations: 

(1.6) 

Eqs.tl.5) and (1.6) must be treated simultaneously. Let X*("') be the orthogonal projection 
of the homogeneous field Xc") onto the plane Il defined by the equations 

ibij.q=O, j=f,...,m 
j=1 

Theorem 3. Assume that X*crn) (e) = xe, where e is the unit vector in II, x = coIlst> 0. 
Then the system of Eqs.(l.S), (1.6) has solutions with asymptotic expansions (1.2), (1.3). 
In particular, the equilibrium position z = 0 is unstable. 

This theorem extends the results of /8/ to non-,potential fields. 
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2. Retativistic version of Earnshaw's theorem. The relativistic equation of motion of 
a charged particle is 

[ )‘w-’ fi _ ~*Q~)-“t~ m F, z E R3 Q.l) 

where F . ..= q(E +z‘ x H) is the torentz force, m is the mass, q is the charge of the particle, 
c is the speed of light and E(H) is the electric (magnetic) field strength. Eq. (2.11 may 
be rewritten as a "Newton equation" (see /g/1: 

SupposeHr= 
*. = [F - (x-/c*) (F, %‘)I (1 - z'W)'h (2.2) 

Tkeorem 4. 
O,and the fiel??E does not depend explicitly on time.Then Eq.(2.2)is invertible. 
The equilibrium of a charge m a stationary electric field is always unstable. 

This proposition extends the fundamental theorem of Earnshaw jl.Of to the relativistic 
case. A stationary electric field is irrotational, and its potential is in fact a harmonic 
function. Any homogeneous form of theMaclaurinseries of a harmonic function is again a 
harmonic function. In particular, by the Mean-Value Theorem, the first non-trivial form does 
not have a local minimum at an equilibrium position. Using the method of Sect.1 one can prove 
the existence of asymptotic solutions in the form of series (1.2), (1.3) (see /ll/). Since 
Eqs.(2.2) are reversible, the equilibrium is unstable. 

Of course, linearization of (2.2) leads to the usual non-relativistic equation, and 
instablity can be proved by means of the classical Earnshaw Theorem. In degenerate cases, 
however, conclusions relating to stability can no longer be based on an analysis of the 
linearized equations. 

It is clear that the equilibrium of a charge is unstable with respect to the components 
of the electric field and its potential. 

3. Some generaZ.Ceations. Consider an autonomous system of equations 

i = u(r), rcizRn (3.1) 

Let v (0) = 0. Then r =0 is an equilibrium position of system (3.1). We wish to 
investigate its stability with respect to a smooth function Q(x), where Q(0) = 0. 

Time reversal applied to (3.1) produces the following new system of equations; 

*& z.z -v (X). (3.2) 

L%WCl. Let system (3.2) have a solution x (1) such that 
1) s(b)+0 as t++m, 2) 4 @I = Q (2 '3) + 0. 
Then r = 0 is an unstable equilibrium position of system (3.1) with respect to Q. 
Asymptotic solutions of Eqs.(3.2) -may be sought as series of a certain type. Expanding 

the components of the vector field u in maclaurin series, we write system (3.2) in the form 
of the equations 

x‘ = .4x j- . . (3.3) 
Let e be an eigenvector of the matrix A with a real eigenvalue -n<O. Then Eqs.(3.3) 

have a particular solution which is a series (1.2) with x(l) = e. Inserting this series into 
the Maclaurin expansion of Q, we again obtain a series in powers of exp(-+) whose coef- 
ficients are polynomials in t. If at least one coefficient of this series does not vanish, 
the equilibrium of system (3.1) is unstable with respect to Q. 

This observation can be generafized. The asymptotic solutions can be expanded in multiple 
series in terms of exponential functions, which are also suitable for use when the eigenvalues 
of A are complex /I./. A necessary condition for the equilibrium position x = 0 of system 
(3.1) to be stable with respect to Q is that this function be constant on the central manifold 
of system (3.2). This property can be verified constructively by using an iterative method 
to construct the Lyapunov series. 

In degenerate cases the asymptotic solutions may be sought as series (X.3). 
AS an example, consider the critical case of one zero root 111. In a typical situation 

Eqs.(3.2) can be reduced to the form 

~'=~~2i-f(2,Y)+~(1Xi~), Y'=BY-t-O(lzI? (3.4) 

ZCFR, y E RR-‘; x = (z, y) 

Here a = cow&+ 0, 3 is a non-singular matrix and f is a quadratic polynomial not 
containing 9. 

Theorem 5. Under the above assumptions, Eqs.(3.4) have an asymptotic solution given by 
the series 

(3.5) 
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where ztk) (.), ytm) (.) are polynomials, z,(l) = --l/a = con&. 

Proof. Inserting the series (3.5) into Eqs.(3.4) and equating coefficients of like 
powers lltk+', we obtain an infinite chain of equations for the successive determination of 
the coefficients z(') and #k+l): 

dk)' = (k - 2)zck) + g,, Byck+') = Gk+l, k = 2, 3, . . . (3.6) 

Here gk, Gk+l are certain known polynomials in lnt and the prime indicates differen- 
tiation with respect to lnt. By (3.5), z(“) and Y(~+') are found as polynomials in lnt. 
The series (3.5) are generally divergent, but Eqs.(3.4) still have solutions for which the 
series (3.5) are asymptotic expansions /6/. 

The following example shows that the series (3.5) may diverge even in the analytic case. 
The system 

2' z +, v' = y - 22 (3.7) 

is an instance of (3.4), with the formal solution 

I 
z=-7, y= 

k=e 

The series for y(t) is divergent for all t > 0, but system (3.7) has the asymptotic 
solution 

+m 

I (t) = - +-, y (I) = 2 
e-u 

u,du 

(3.8) 

(3.9) 

Integrating successively by parts, we obtain the asymptotic series (3.8). The passage 
from (3.8) to (3.9) may be interpreted as summation of a divergent series /12/. 

The existence of asymptotic solutions in the form of series (3.5) enables one to establish 
simple sufficient conditions for the equilibrium position z=o of system (3.4) to be 
unstable with respect to prescribed smooth functions of 2 = (u. 2). 
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